1. Zero-Shot Prompting
Direct instruction without examples. Works great for simple, well-defined tasks where the AI already knows what we mean.
Translate the following English text to French: "Hello, how are you?"
תרגם את הטקסט הבא מאנגלית לצרפתית: "Hello, how are you?"
AI Output:
"Bonjour, comment allez-vous?"
2. Few-Shot Prompting
The exciting part here: we show the AI exactly the pattern we want by giving it examples. This is insanely powerful for custom tasks.
Classify the sentiment of these reviews:
Review: "Amazing product, love it!" → Positive
Review: "Terrible, waste of money" → Negative
Review: "It's okay, nothing special" → Neutral
Review: "Best purchase I've ever made!" →
סווג את הסנטימנט של הביקורות הבאות:
ביקורת: "מוצר מדהים, אוהב!" → חיובי
ביקורת: "נורא, בזבוז כסף" → שלילי
ביקורת: "זה בסדר, כלום מיוחד" → ניטרלי
ביקורת: "הקנייה הכי טובה שעשיתי!" →
AI Output:
Positive
The AI nails it - it follows the pattern from our examples and correctly classifies the enthusiastic review.
3. Chain-of-Thought (CoT)
This one blew my mind when I first tried it. We ask the AI to think step-by-step, and suddenly it can solve problems it couldn't before. The improvement on reasoning tasks is dramatic.
Solve this problem step by step:
A store has 50 apples. They sell 15 in the morning and receive 20 more.
Then they sell 30% of what they have. How many apples remain?
Let's think through this step by step...
פתור את הבעיה הזו צעד אחר צעד:
בחנות יש 50 תפוחים. הם מוכרים 15 בבוקר ומקבלים עוד 20.
אז הם מוכרים 30% ממה שיש להם. כמה תפוחים נשארים?
בוא נחשוב על זה צעד אחר צעד...
AI Output:
Let me solve this step by step:
Step 1: Start with 50 apples
Step 2: Sell 15 in the morning: 50 - 15 = 35 apples
Step 3: Receive 20 more: 35 + 20 = 55 apples
Step 4: Sell 30% of 55: 55 × 0.30 = 16.5 ≈ 17 apples sold
Step 5: Remaining: 55 - 17 = 38 apples
4. Role Prompting
We assign the AI a specific persona or expertise. Turns out, this changes how it approaches problems in really useful ways.
You are a senior software architect with 20 years of experience.
Review this code and identify potential scalability issues:
function getUsers() {
return database.query("SELECT * FROM users");
}
אתה ארכיטקט תוכנה בכיר עם 20 שנות ניסיון.
סקור את הקוד הזה וזהה בעיות סקלביליות פוטנציאליות:
function getUsers() {
return database.query("SELECT * FROM users");
}
AI Output (as Senior Architect):
Critical Scalability Issues:
1. No pagination - SELECT * returns all users, causing memory issues at scale
2. No caching - Every call hits the database
3. No field selection - Fetches unnecessary columns
Recommended fix:
SELECT id, name, email FROM users LIMIT 100 OFFSET ?
5. Structured Output
We specify the exact format we want. This is huge for automation and integrations.
Analyze this product and return your analysis in JSON format:
Product: "Wireless Bluetooth Earbuds - $29.99"
{
"pros": ["..."],
"cons": ["..."],
"rating": 1-10,
"recommendation": "..."
}
נתח את המוצר הזה והחזר את הניתוח בפורמט JSON:
מוצר: "אוזניות בלוטות' אלחוטיות - $29.99"
{
"pros": ["..."],
"cons": ["..."],
"rating": 1-10,
"recommendation": "..."
}
AI Output:
{
"pros": [
"Affordable price point",
"Wireless convenience",
"Bluetooth connectivity"
],
"cons": [
"Unknown brand reliability",
"Potentially lower audio quality",
"Battery life unclear"
],
"rating": 6,
"recommendation": "Good budget option for casual use, but research brand reviews first"
}